
Tips
& Tricks

uses {...} Controls;
...
Procedure CreateModal(FormClass: TFormClass);
begin
 Screen.Cursor := crHourglass ;
 with FormClass.Create(Application) Do
 Try
 Screen.Cursor := crDefault ;
 ShowModal
 Finally
 Free
 end
end;

➤ Listing 1

TLists Revisited
At the end of Jonathon Morgan’s article Turbocharging
Database Applications With TLists in the October 1996
issue, he recomends using polymorphism to free a set
of TObjects in a TList.

I was using a similar method to free a set of TBitmaps
assigned to TStrings (the Items of a listbox), under
Delphi 1. I found that casting them to TObjects allowed
me to free them, but that not all the memory was being
de-allocated. Casting to the correct type (TBitmap)
solved the problem. It seemed that TObject was freeing
the objects as TObjects, rather than calling their
descendant methods to free all the required memory.

Contributed by Mark Williams
Mark@polyhdrn.demon.co.uk

Showing Modal Forms
Here’s another addition to Brian Long’s addition
(October issue) to Richard Smith’s excellent Tip in the
August issue. Using the code shown in Listing 1, if the
form takes a while to start up (due to a slow machine)
at least users are pacified! Make sure Controls is
included added to the uses clause.

Contributed by Glenn Shukster, Thornhill, Ontario,
Canada (CompuServe 72734,123)

Rich Text On The Clipboard
Cut and Paste is my favorite technique in the Windows
world (under DOS I hate the fact that I can’t share
information between different applications). With
Windows 95 and Delphi 2.0 we have a new format for
exchanging text: Rich Text Format (RTF).

RTF has the advantage of being able to include for-
matting styles in your text. You can make a total sum
bold, or you can underline specific text for example.
Now you can output RTF text to a file and load it into
another application. You may think we can use the
Clipboard for that, but the TClipboard class which
comes with Delphi loses the formatting and we just get
plain text.

Each Clipboard format supported by Windows has a
unique ID. You can browse the currently active format
in the clipboard with the code shown in Listing 2. I used
this to spy out the name under which the Rich Text
Format is registered. Some of the Clipboard format IDs
are defined in the Windows unit, for example CF_TEXT and
CF_BITMAP, but not CF_RTF. However, we can define it
ourselves as follows:

var CF_RTF : Word;
...
CF_RTF :=
 RegisterClipboardFormat(’Rich Text Format’);

The text Rich Text Format is very important.
So, now we can develop a descendant of Delphi’s

TClipboard class to support RTF. I called it TxRTFClip-
board, because it resides in our xTools library. The
TxRTFClipboard unit source code is included on this
month’s disk for your free use. This new class can be
accessed by calling RTFClipboard. It has a new property
of type string called AsRTF. The RTF format is no more
than a very large string with a bunch of formating codes
enclosed in {} brackets, so it’s very easy to handle with
Delphi 2.0 now we have 2Gb strings!

If the RTF format is supported by the Clipboard the
following call shows the contents of the clipboard:

ShowMessage(RTFClipboard.AsRTF);

In the same manner we can put something onto the
clipboard. For example the following code puts a
formatted address onto the clipboard:

RTFClipBoard.AsRTF :=
 ’{\rtf1\ansi\deff0\deftab720’ +’{\fonttbl’
 + ’{\f0\fmodern Times;}}’ +’{\colortbl’
 + ColorToRtf(clBlack) +ColorToRtf(clWhite)
 + ’}’ + ’\deflang1031\pard\plain\f0\fs20’
 +’To\par ’ +’Fabula Software\par ’
 +’Stefan Bother\par ’ +’Methfesselstr. 38\par ’
 +’{\b 20257 Hamburg\par ’
 + ’Germany\par }’ + ’}’;

procedure TMainForm.Button3Click(Sender: TObject);
var
 Format : word;
 Tmp: array[0..100] of char;
begin
 Clipboard.Open;
 Format := EnumClipboardFormats(0);
 while Format <> 0 do begin
 GetClipboardFormatName(Format,Tmp,Sizeof(Tmp)-1);
 ShowMessage(IntToHex(Format,8)+’:’+String(Tmp));
 Format := EnumClipboardFormats(Format);
 end;
 Clipboard.Close;
end;

➤ Listing 2

58 The Delphi Magazine Issue 15

This address is now ready for pasting into your word
processor with a bold zipcode, city and country. Don’t
forget to also support the same text in plain CF_TEXT
format in case the receiving application cannot take
RTF. In the above example you would assign it as
follows:

RTFClipboard.AsText :=
 ’To’+#13#10+’Fabula Software’+#13#10+
 ’Stefan Bother’+#13#10+
 ’Methfesselstr. 38’+#13#10+
 ’20257 Hamburg’+#13#10+’Germany’;

When using RTF Clipboard support with Delphi 2.0’s
RTF Edit control (TRichEdit) I found the documentation
lacking. It’s not very clear how to assign and get RTF
text from and to the control. So I wrote two simple
methods to do it. The trick is to use the
TRichEdit.Lines.LoadFromStream and ...SaveToStream
calls with a memory stream and then use a typecast to
the memory buffer. The following example assumes
that you have a RichEdit1 control on your form. From
String to RichEdit control use:

strToRtf(MyRTFString, RichEdit1.Lines);

 and from RichEdit control to String use:

ShowMessage(RtfToStr(RichEdit1.Lines));

So I now hope you will write a lot of RTF enabled
applications. At Fabula we used our experience in RTF
to write tools for creating Help and HTML files with the
RichEdit control. The formatting is also a great plus for
database applications.

Contributed by Stefan Boether, who works for Fabula
Software in Hamburg, Germany and can be reached
by email at stefc@fabula.com

Which Event?
When Delphi closes a form, it generates many related
events. Which should we use? The flow of events is
described in the diagram shown in Figure 1.

One difference between clicking OK and pressing
Enter is that a mouse click moves the focus to the
button but pressing the Enter key doesn’t. For some
controls which only update their value when the focus
changes, pressing Enter may cause some problem. I
solve this by putting:

OkBtn.SetFocus;

in the first line of the OK button handling code to make
sure the focus is always moved.

I suggest you avoid putting form close handling code
in OK or Cancel’s OnClick event, because they are not
executed if the form is closed from the System menu.
Instead, I put both OK and Cancel processing code in
OnCloseQuery. Then you can use the ModalResult
property to distinguish between them. Note that for

non-MDI forms, OnCloseQuery and OnClose can be used
interchangeably.

To stop a form from closing, we may use the following
methods:
➣ From OnClick, set ModalResult to mrNone (default is

mrOk/mrCancel);
➣ From OnCloseQuery, set CanClose to False (default is

True) or raise an exception;
➣ From OnClose, set Action to caNone (default is caHide)

or raise an exception.
Surprisingly, raising and exception inside of OK or
Cancel’s OnClick event doesn’t stop the form from
closing. I consider this a Delphi bug.

Contributed by Steve Tung,
email: stung@po.pacific.net.sg

Text File Device Drivers In 32-Bit Land
Programming in the 32-bit world may not be Wonder-
land, but it is certainly different to 16-bit programming.
My text file device driver (TFDD) for string parsing (see
the article in Issue 12, August 1996), written before
Delphi 2 existed, has served me well in Delphi 1, but
anyone who tried to use it in Delphi 2 may have noticed
two things: it won’t compile and even if you do find a
way to compile it, it will not work.

Several things must be changed in order to use the
sdd unit in Delphi 2. To compile it as a 32-bit unit, you
must eliminate the 16 bit assembly code. In this version
I just eliminated the delim procedure, since I decided
to handle converting the delimiter character another
way. To avoid a typecasting problem in compilation,
we must recognize that Borland changed the size of the
UserData field to 32 bytes. Listing 3 shows the new sdd
unit, including the new declaration of the usr type. To
keep the same kind of string as before I used the {$H-}
directive. I have never needed even the full 255 char-
acters available in the shortString for strings that I
parse in this way, so I saw no need to change to the
longer ansiString.

Click Win95 Close box
Press AltF4
Close from System menu
Close method

Do all MDI
children agree
to close?

Press Enter
Click OK OkBtn.OnClick

Press Esc
Click Cancel CancelBtn.OnClick

 OnClose

OnCloseQuery

➤ Figure 1

60 The Delphi Magazine Issue 15

Making the unit compilable is a worthy goal, but we
still need to make it work! In Delphi 2, the InStr function
was never called. It turned out that some values which
I could take for granted before now have to be
initialized. To AssignSt I added:

BufPos := 0;
BufEnd := 0;

The final change I made was not required, but I con-
sider it an enhancement. At first I replaced delim with
ordinary Delphi code, but I decided to move the con-
version of delimiters to #13 into InStr. Rather than
make changes to the source string that later must be
reversed, I make the changes in the temporary buffer.
For this purpose I embarked on my first adventure with
string manipulation assembly code in 32-bit mode.

For output with the string device driver, I do not use
WriteLn at all, since that puts a carriage return and a
line feed into the string. If I use Write, I explicitly write
the delimiter:

write(t,data,delimiter);

Thanks to my co-worker Brent Sherwood for assuring
me that scasb will work in 32-bit mode and to reader
Rene Holst who encouraged me to make this work for
Delphi 2.

Contributed by Jon Jacobs, Mastercomp,
email: mstrcomp@gte.net

unit sdd;
{string device driver to convert numbers and parse strings}
{$H-}
interface
uses SysUtils;
procedure AssignSt(var t:textFile;var s:string;dlm:char);
implementation
type
 PString=^string;
 usr=record
 ps : PString;
 dlim : char;
 ud : array[6..32] of byte;
 end;
function InStr(var t:textFile):integer; far;
var
 p : pointer;
 e : cardinal;
 dlm : char;
begin
 InStr := 0; {for ioResult}
 with TTextRec(t),usr(UserData) do begin
 if (BufPos<BufEnd) and (Handle<>0) then exit;
 BufPos := 0;
 BufEnd := length(ps^)-Handle;
 if BufEndBufSize then BufEnd := BufSize;
 move(ps^[succ(Handle)],BufPtr^,BufEnd);
 inc(Handle,BufEnd);
 p := BufPtr;
 e := BufEnd;
 dlm := dlim;
 asm
 push edi {save Delphi’s string pointer}
 mov edi,p {point to buffer}
 mov al,dlm
 mov ah,13
 mov ecx,e {keep track of how much buffer left to search}
 cld {go forward}
 @@1:
 repnz scasb {search for the delimeter in al}
 jnz @@2 {if not found this time must be at end}
 mov [edi-1],ah {found, so make the substitution }
 jcxz @@2 {if counter 0 then done}
 jmp @@1 {if not at end, look for another}
 @@2:
 pop edi {restore Delphi’s string pointer}
 end;
 end;
end; {InStr}
function OutStr(var t:textFile):integer; far;
var i : integer;
begin
 with TTextRec(t),usr(UserData) do begin
 for i := BufEnd to BufPos-1 do
 ps^ := ps^+PTextBuf(BufPtr)^[i];
 Handle := length(ps^);
 BufEnd := BufPos;

 end; {with}
 OutStr := 0; {for ioResult}
end; {OutStr}
function FlushStr(var t:textFile):integer; far;
begin
 FlushStr := 0; {for ioResult}
end; {FlushStr}
function CloseStr(var t:textFile):integer; far;
begin
 with TTextRec(t) do begin
 Mode := fmClosed;
 Handle := 0;
 BufEnd := 0;
 end;
 CloseStr := 0; {for ioResult}
end; {CloseStr}
function OpenStr(var t:textFile):integer; far;
begin
 with TTextRec(t),usr(UserData) do begin
 CloseFunc := @CloseStr;
 case Mode of
 fmInOut : begin
 Mode := fmOutput;
 InOutFunc := @OutStr;
 FlushFunc := @OutStr;
 Handle := length(ps^);
 end;
 fmInput : begin
 InOutFunc := @InStr;
 FlushFunc := @FlushStr;
 end;
 fmOutput : begin
 InOutFunc := @OutStr;
 FlushFunc := @OutStr;
 ps^ := ’’;
 end;
 end; {case}
 end; {with}
 OpenStr := 0; {for ioResult}
end; {OpenStr}
procedure AssignSt(var t:textFile;var s:string;dlm:char);
begin
 with TTextRec(t),usr(UserData) do begin
 Mode := fmClosed;
 BufSize := SizeOf(buffer);
 BufPtr := @buffer;
 OpenFunc := @OpenStr;
 BufPos := 0;
 BufEnd := 0;
 Name[0]:=#0;
 dlim := dlm;
 ps := @s;
 Handle := 0;
 end; {with}
end; {AssignStr}
end.

➤ Listing 3

Thanks for all your Tips,
keep them coming in!

If you have any hints that
you think will be of use to
fellow Delphi developers,

just drop them in an
email to the Editor on

70630.717@compuserve.com

62 The Delphi Magazine Issue 15

	TLists Revisited
	Showing Modal Forms
	Rich Text On The Clipboard
	Which Event?
	Text File Device Drivers In 32-Bit Land

